

Small Wind 101: A Primer for Remote Power

Framkvæmdastjóri 112 Technical Seminar March 13, 2013

Mike Bergey Bergey Windpower Co.

Mike Bergey

- Working in small wind since 1976
- Twice president of the American Wind Energy Association (AWEA)
- AWEA Board for 27 years
- Chaired AWEA Small Wind Committee for 22 years
- Chairs AWEA Small Wind Turbine Certification Standards Committee -AWEA 2009-9.1
- President, Distributed Wind Energy Association

Bergey Windpower Co. A World Leader in Small Wind

- Established in 1977
- Focus on small wind turbines for distributed applications – on-grid & offgrid
- Serve consumer, commercial, & industrial markets
- Over 9,000 installations, covering all 50 States and over 100 countries
- Ranked #1 in the World in Small Wind

Bergey Products

WINDPOWER

Custom Inverters &

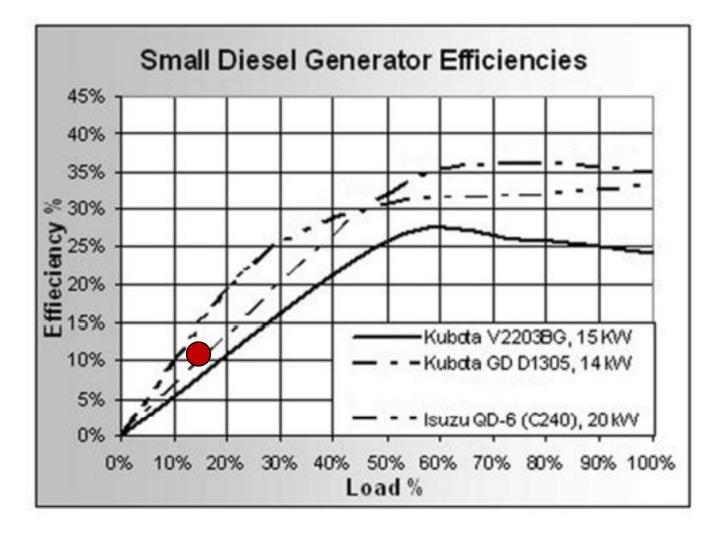
battery chargers

Strong Products: 1, 5 & 10 kW

7.5/10 kW

50 kW (in development)

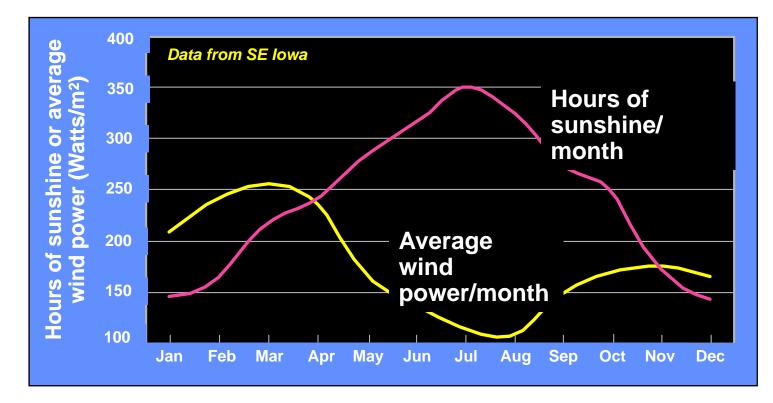
Why Small Wind & Solar Hybrid Systems?


Diesel Generators are Wonderful! Except for ...

- Diesel fuel cost have gone up with oil prices
- Often fuel logistics adds high costs for very remote sites
- Use as prime power, 24/7, requires regular minor and major maintenance
- 99.9+% reliability requires dual generators
- Most are operated a low load ... which causes problems

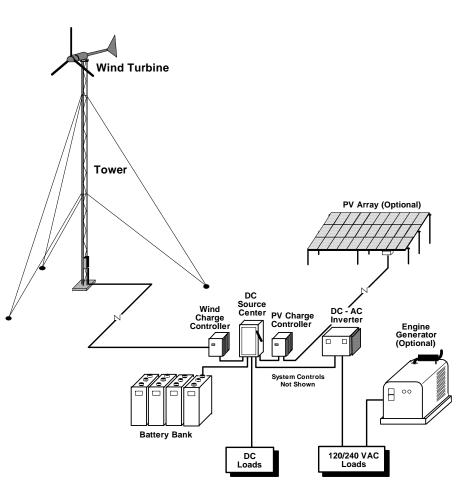
Low Loads are Bad for Diesels

Wind Turbines and Diesels are Complimentary


Characteristic	Wind	Diesel
Capital Cost	High	Low
Operating Cost	Low	High
Logistics Burden	Low	High
Maintenance Requirements	Low	High
Available on Demand	No	Yes

Together, They Provide a More Reliable and Cost-Effective Power System

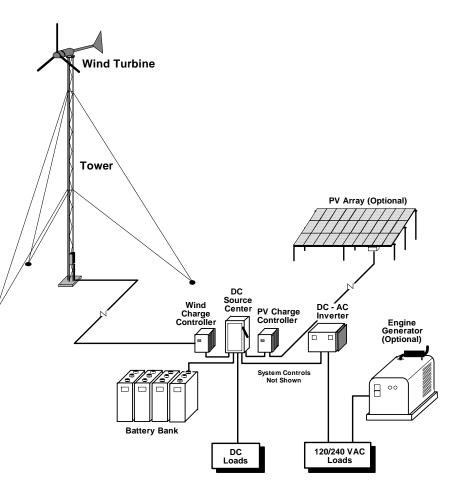
Wind and Solar Resources are often Seasonally Complimentary



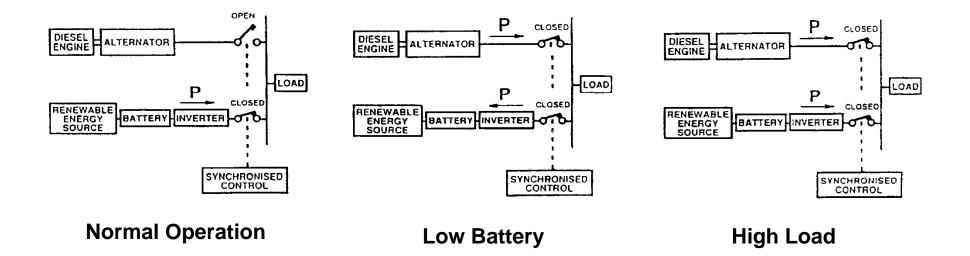
Wind/Solar/Diesel Hybrid Systems

The Smart Way to Power Remote Sites

- Provides 24/7 Power with Diesel Run Times Reduced to ~ 10 - 20%
- Renewables Typically Supply 50 - 90% of Energy
- "DC-Bus" Architecture is same as "Cycle-Charge Diesel" Systems, but with Renewables Added

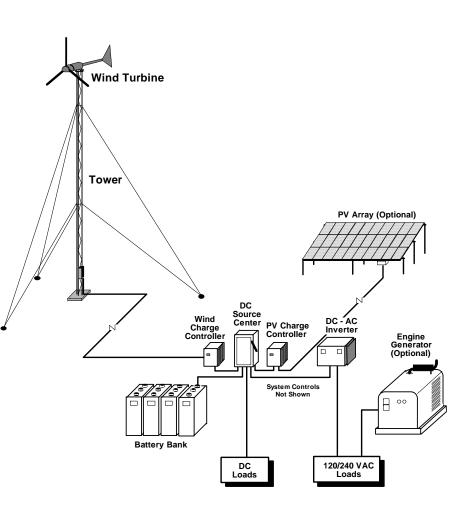


Wind/Solar/Diesel Hybrid Systems


The Smart Way to Power Remote Sites

- One or More DC Wind Turbines & Solar Arrays
- 1 3 Days of Battery Storage
- Back-up Diesel Generator for Low Wind / Solar Periods
- Advanced "Consumer" Inverters for AC, Diesel Starting, and Diesel Battery Charging

Advanced Inverter Systems


Bi-Directional Inverters, which Include Battery Charging and Load Transfer Capabilities, Allow Back-up Diesels to be Used Efficiently

Hybrid Operational Modes

- 1. Battery Normal: Wind & Solar Charging, Diesel Off
- 2. Battery High: Wind & Solar Regulate Output
- 3. Battery Low: Inverter Starts Diesel, Transfers AC Load & Charges Battery with Diesel at Most Efficient Power Level; Wind & Solar Charging ... Reverts When Battery Charged

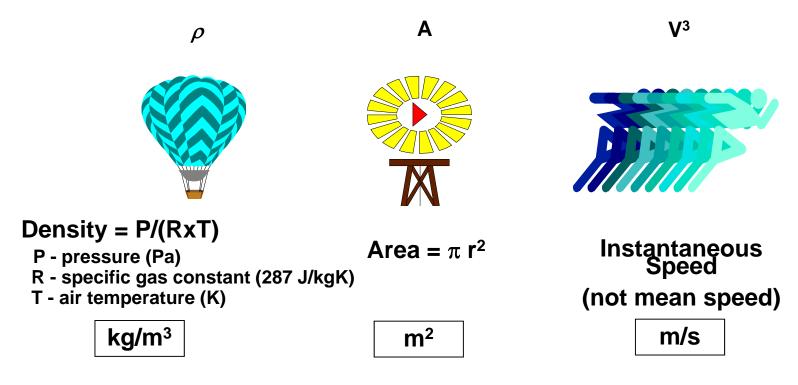
WINDPOWER

Typical Telecom Project Metrics

- Equipment: BWC 7.5 kW Wind Turbine, 2 kW Solar, ~ 60 kWh Battery Bank, 15 kW Diesel, Controls, & Monitoring
- Load: 1.5 kW continuous, plus DC air-conditioning; ~ 50 kWh/day
- Performance: 80% Annual Fuel Savings
- Cost: \$110,000
- OPEX Savings: ~ \$25,000/year, fuel & diesel O&M (\$1.25/liter)
- Green Attributes: Saves 600 tons of greenhouse gases and 3.6 tones of air pollutants over 30 year life

Safaricom Masai Mara Game Reserve Kenya

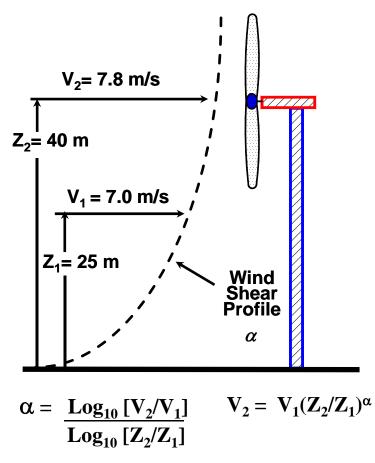
Part 1: Understanding the Fuel

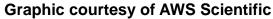


- Created by Uneven Solar Heating
- Wind Energy is Kinetic Energy ... Mass & Momentum
- Wind Energy is Proportional to Velocity Cubed (V³) ... If Velocity is Doubled, Power Increases by a Factor of Eight (2³ = 8) ... Small Differences in Average Speed Cause Big Differences in Energy Production
- Wind Resources are Abundant
- Distributed ... Most Areas Have Sufficient Wind for Off-Grid Power Applications
- Wind is Intermittent

Power in the Wind (W/m²)

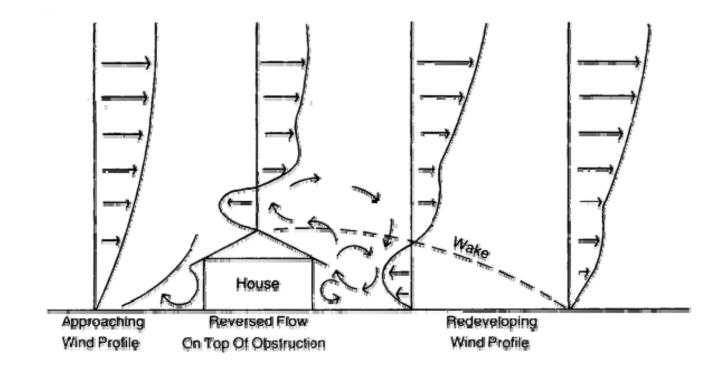
= $1/2 \times air density \times swept rotor area \times (wind speed)^3$

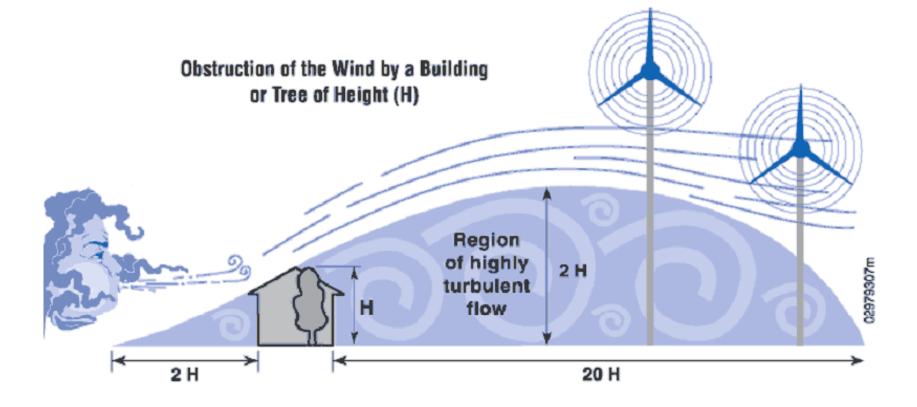



Graphic courtesy of AWS Scientific

Wind Shear

The change in horizontal wind speed with height

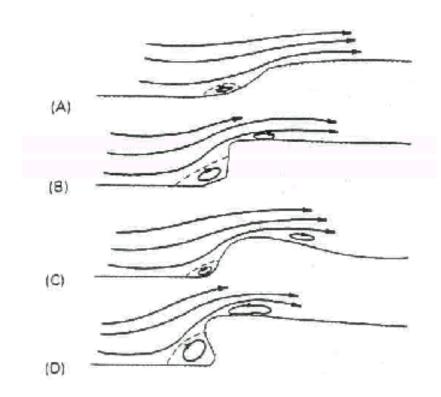

- A function of wind speed, surface roughness (may vary with wind direction), and atmospheric stability (changes from day to night)
- Wind shear exponents are higher at low wind speeds, above rough surfaces, and during stable conditions
- ***** Typical exponent (α) values:
 - .10 .15: water/beach
 - .15 .25: gently rolling farmland
 - .25 .40+: forests/mountains



Turbulence

Turbulence cuts performance by reducing the effectiveness of the blades

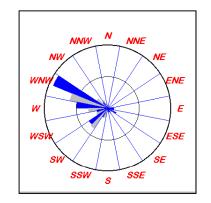
Height or Distance Needed

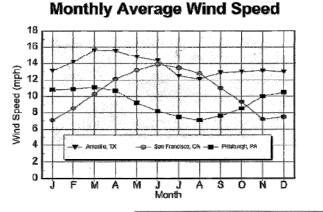

Rule-of-Thumb: Be <u>at least</u> 30 ft. above obstacles within 300 ft.

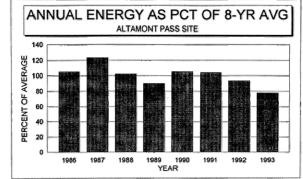
Tower Height Matters

Putting a Wind Turbine on a Short Tower is Like Putting a Solar Array in the Shade

Avoid Cliffs

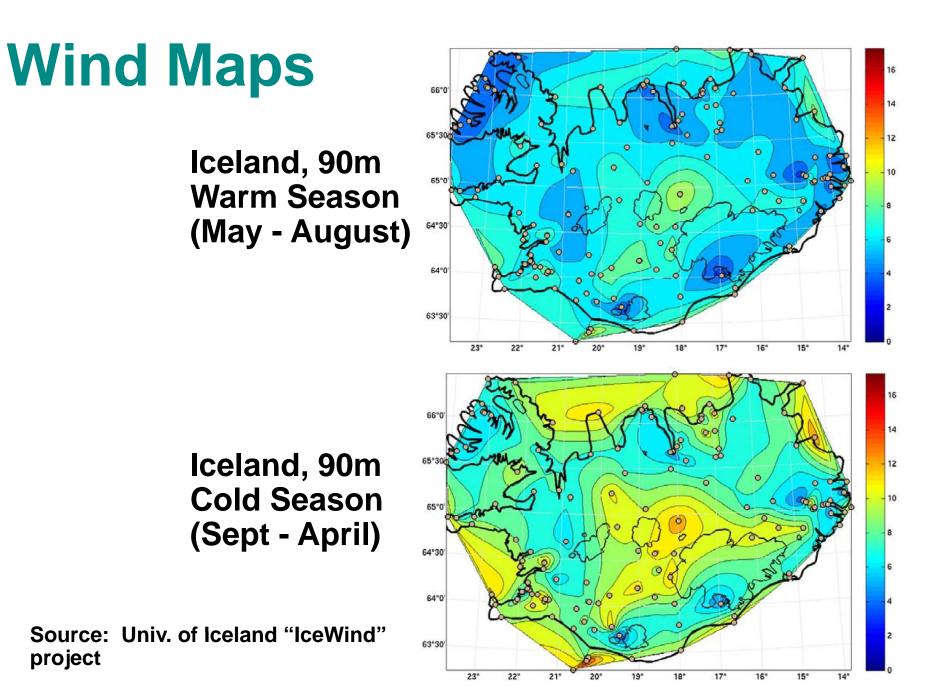

AutoFurl (passive furling) needs horizontal flow through the rotor

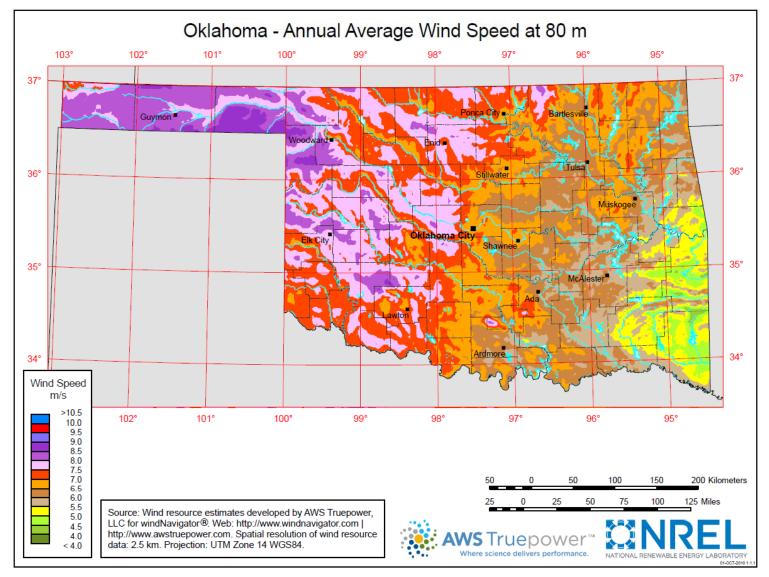




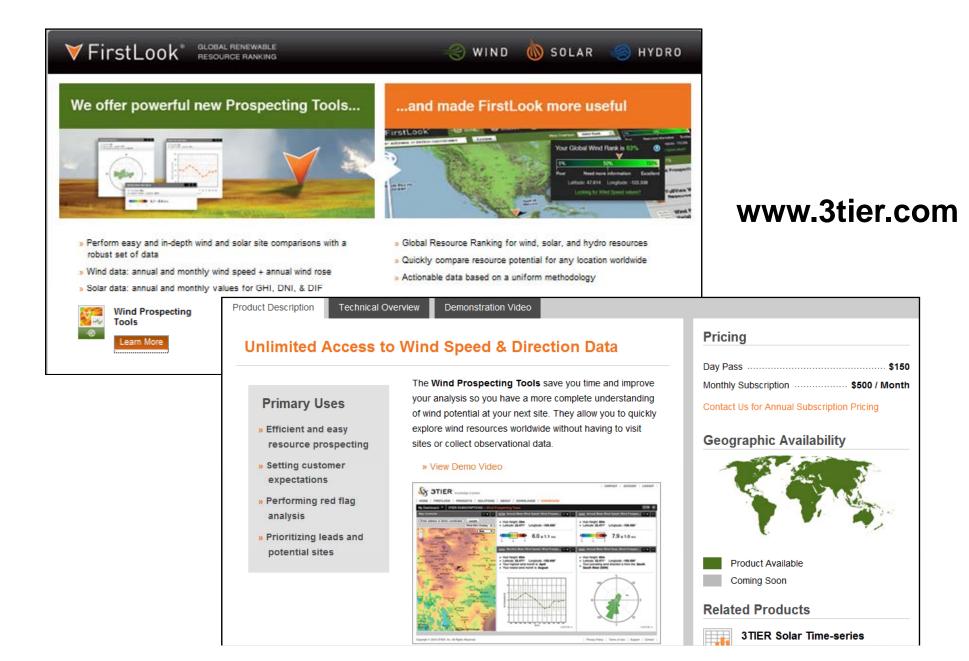
Additional Considerations

- Wind turbine performance diminishes with altitude
- Sites have "Prevailing Wind Direction" ... useful in considering effects of obstructions and multi-turbine array layout
- Wind resources vary seasonally and annually





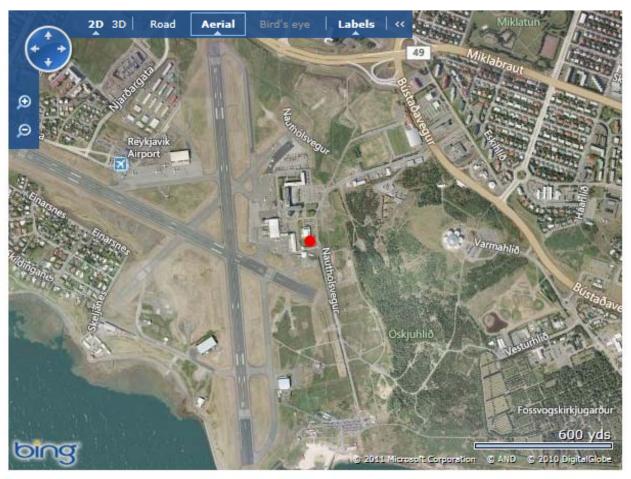
What's the wind resource where I need energy?



Detailed Digital Maps: Upper Air Data + GIS + Math

Subscription Web Based Wind Maps

Integrated On-line Performance Tools

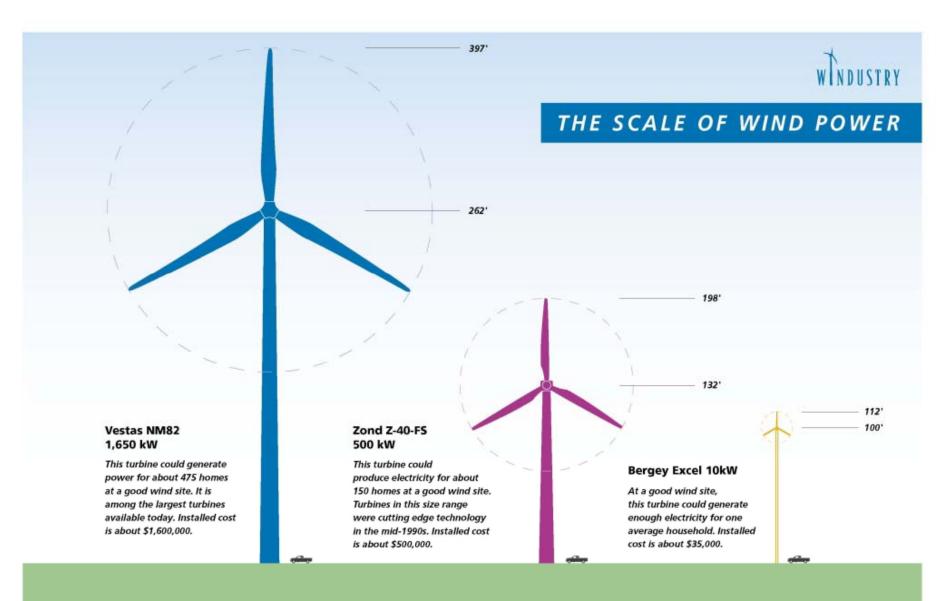

Bergey WindCad Performance & Economics Evaluation Tool

Print Report Logout | Administration

Powered by New Roots Energy

WINDPOWER Turbine Production Financial Analysis Saved Sessions Contact Us

Turbine Production:



Turbine Selection Be	Bergey Excel 10	
Nameplate Capacity [kW]	10.0	
Rotor Diameter [m]	7.0	
Site Location:		
64.129239° latitude -21.930458° longitude		
Average Wind Speed [mph]	14.85	
Tower Height [ft]	100.0	
Altitude [ft]	150.0	
Weibull K	3.0	
Wind Shear	0.18	
Turbulence Factor [%]	5.0	
Average Output Power [kW]	2.4	
Daily Energy Output [kWh]	58.7	
Monthly Energy Output [kWh]	1,784.5	
Annual Energy Output [kWh]	21,414.4	
Hub Average Wind Speed [mp	h] 14.9	
Air Density Coefficient	1.0	
Operating Time [%]	96.4	

Part 2: Small Wind Turbine Technology

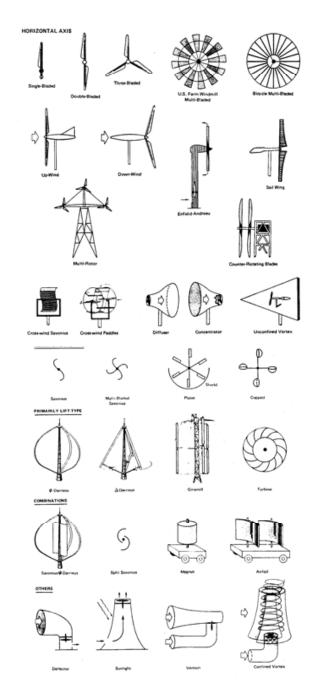
Small and Large Wind are Different

Modern Small Wind Turbines:

High Tech, High Reliability, Low Maintenance

- Products from 200 W 100 kW
- Technically Advanced, Sophisticated & Simple
- Very Low Maintenance Requirements
- Certified Products Available

Turbine Configurations



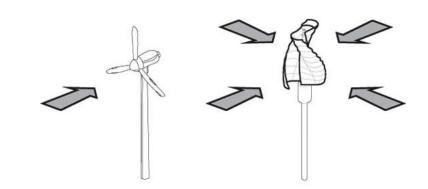
Horizontal-axis (HAWT) 99% Market Share Vertical-axis (VAWT) 1% Market Share

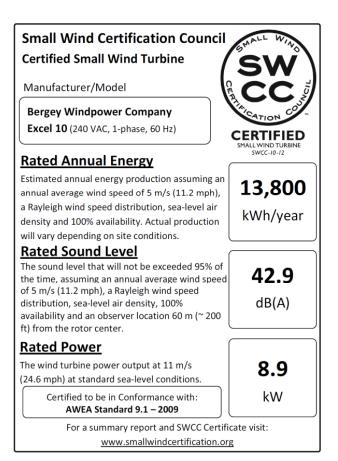
Turbine Configurations

- Hundreds of possible configurations ... most are bad or terminally uncompetitive
- Bad configurations keep getting "re-invented", wasting time and money:
 - Savonius (drag-type) Vertical-Axis Rotor in dozens of variations
 - Concentrators / Diffusers
 - Uncompetitive, but pretty
 - Darrieus (lift-type) Vertical-Axis Rotors

Bozos & Hucksters

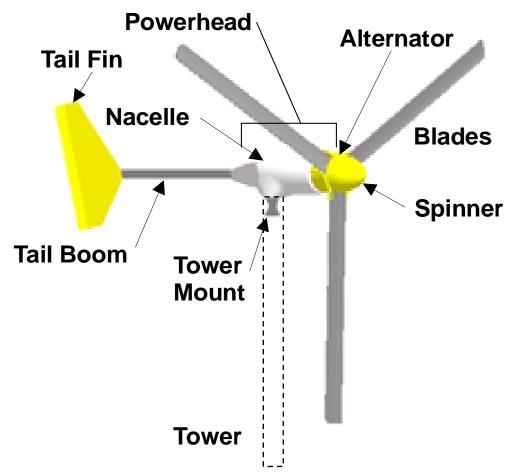
- Bozo: Clueless on physics and engineering - don't know what they don't know
- Huckster: Aware that their claims are bogus and don't care
- General public wants to believe that there's been a performance and cost breakthrough
- Identification: 1) Performance claims that exceed Betz Limit (59.3%) or really short towers
- ✤ Vertical-axis is a favorite

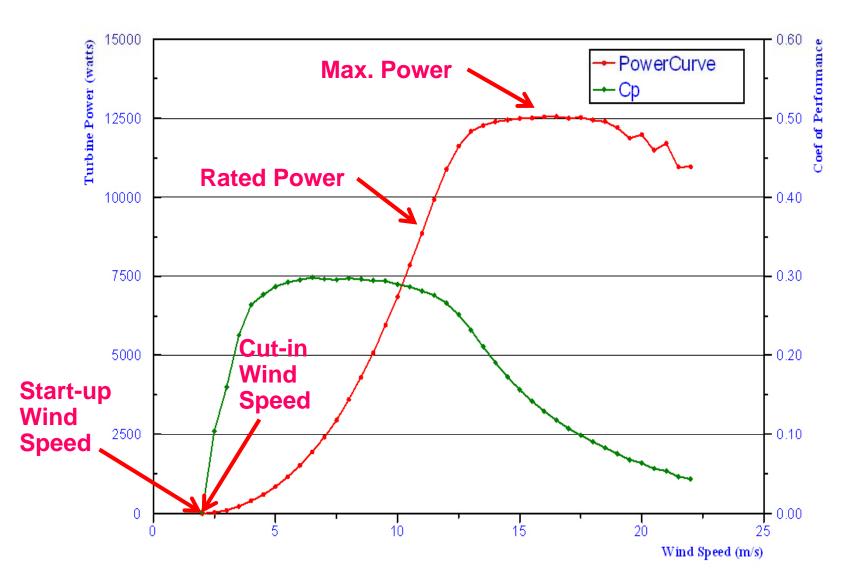



Common False Claims – Beware!

- * "50% more efficient that conventional wind turbines"
- Superior because it accepts wind from all directions"
- "Works well in turbulence"
- Our technology eliminates the need for tall towers"
- "Bird friendly"

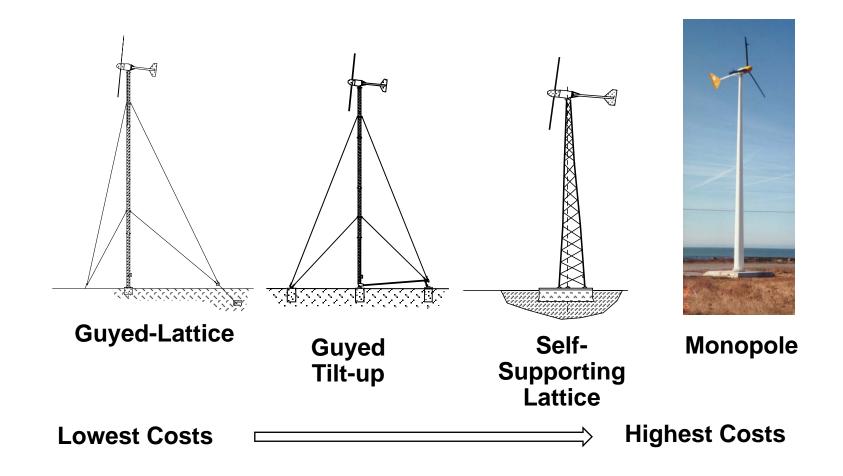
AWEA Certification Standard


- Sets Rated Power at 11 m/s (25 mph)
- Introduces "AWEA Estimated Annual Energy" modeled after EPA Estimated Mileage for cars
- 6 month duration test; 90% availability requirement
- Detailed structural analyses (based on IEC 61400-2)
- Certifications issued by SWCC (smallwindcertification.org) or other agency
- "Same" standard adopted in UK & Japan


Generic Small Wind Turbine

- 3 Blade Rotor Fixed Pitch
- Special "Integrated" Direct Drive Permanent Magnet Generator
- * Tail Aligns Rotor to Wind
- Passive Overspeed Protection by Furling, either Up or to Side; or with mechanical blade pitch system
- No Mechanical Brake ... Shutdown with Electrical Braking

Performance: Power Curve


Manufacturer's Annual Energy Output Ratings

Hub Height	Estimated
Annual Average	Annual Energy
Wind Speed	Production
(m /s)	(kWh)
4	7,135
5	13,842
6	22,300
7	31,342
8	39,755
9	46,652
10	51,626
11	54,685

Towers Numerous Options

Towers of 18 - 37 m (60 - 120 ft) Recommended for Most Situations

Technical Challenge

*** Difficult Operating Environment:**

- Energy Inflows from 38 W/m2 (4 m/s) to 94,500
 W/m2 (54 m/s)
- ✤ 7,000+ Operating Hours per Year
- 75 Million Cycles per Year: > 2 Billion in 30 Year Life
- High Gusts, High Turbulence, Lightning, Icing, Salt, Spray, Sand, Etc.
- ✤ Difficult Maintenance Environment
- Dispersed Installations Means Expensive Maintenance & Repairs
- *** Reliability is Paramount**

Reliability and Maintenance

- Turbines Operate Unattended and Automatically, Even in Severe Weather
- Reliability and Maintenance Requirements are Design Specific ... Look for:
 - Simplicity of Design
 - Fiberglass Blades
 - Direct Drive, Brushless, Generators
 - Heavy Weight Structural Elements
 - Corrosion-Resistant Materials and Finishes

... and Check Supplier Reputations!

Best Available Units Require No Scheduled Maintenance and can Operate for 6-20 Years Without Attention

- Inspection Recommended Every 2 Years
- At 6-20 Years, Blade Leading Edge Tape Must be Renewed
- Typical Design Operating Life is 30 Years (Some Small Turbines Have been Operating for More Than 60 Years!)

Shopping for Small Wind Systems

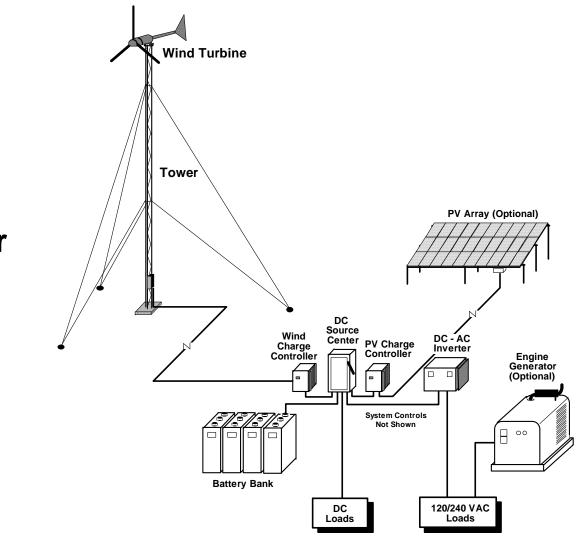
- Unlike solar, product quality is design specific
- Look for a verifiable track record otherwise your project will be part of the beta test
- Turbine should be certified or under test for certification
 - **SWCC**, Intertek, or British MCS
- Company's financial strength / stability can be an issue (to avoid orphaned products)

Top Off-Grid Manufacturers

- Bergey Windpower (USA)
- Kestrel (South Africa)
- Sonkyo (Spain)
- Bornay (Spain)
- Northern Power (USA)
- Kingspan (Ireland/UK)

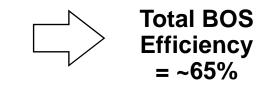
End of First Session

Questions?



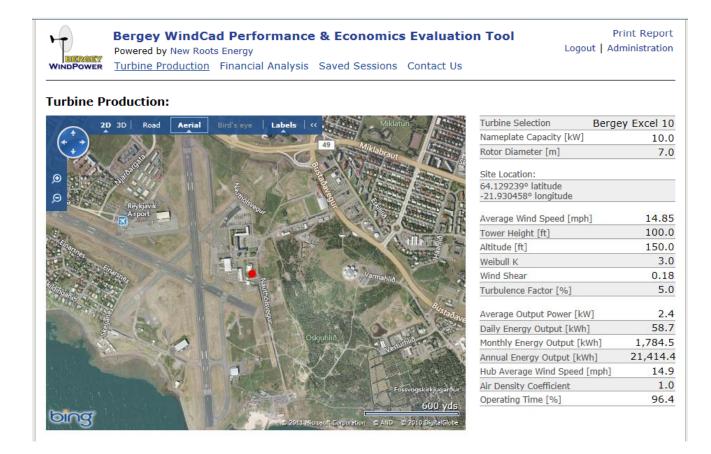
Part 3: Design of DC-bus Hybrid Systems

Major Components


- 1. Wind Turbine(s)
- 2. Solar Array(s)
- 3. Battery Bank
- 4. Inverter(s)
- 5. Diesel Generator

- 1. Use Best Available Information and Experience from Similar Installations to Establish Load (kWh/day) Requirements
 - "Load Counting" Method is Common
 - Penalty for being wrong is more fuel consumption or more costs, not lower reliability

- 2. Convert AC Energy Requirements to DC Using Balanceof-System (BOS) Efficiency, Such As:
 - Battery Net Efficiency = 85%
 - Inverter Net Efficiency = 90%
 - Wiring Net Efficiency = 96%
 - "Controls" Net Efficiency = 90%


3. Use Best Available Information to Establish Annual / Monthly Average Wind Speed Estimates

Wind and Solar Resources

Month	Average Wind Speed (m/s)*	Solar Resource (kWh/m2/day)
Jan	5.2	3.3
Feb	5.4	4.1
Mar	5.8	4.2
Apr	6.1	4.6
May	5.8	5.2
Jun	5	6.1
Jul	4.8	6.2
Aug	3.9	6.2
Sep	4.4	5.6
Oct	5	5.1
Nov	4.8	4.5
Dec	5.4	3.9
Annual	5.1	4.9

[* at 10m height]

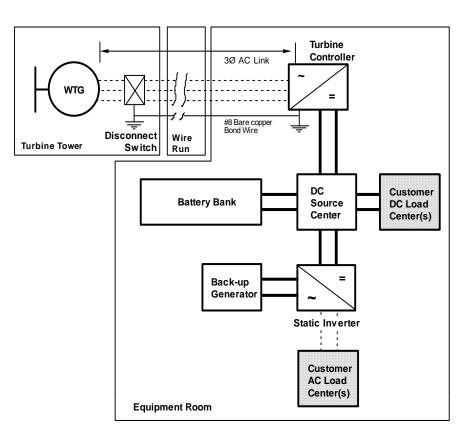
4. Establish Site Conditions and Other Parameters Necessary for the Performance Model - Calculate Turbine Performance (Daily Energy Output) for Each Month

- 5. Use Best Available Solar Resource Information to Establish Monthly Average Peak Sun Hours or kWh/m2/day
 - First Approximation: PSH x Array Size = Daily Energy

Month	Average Wind Speed (m/s)*	Solar Resource (kWh/m2/day)
Jan	5.2	3.3
Feb	5.4	4.1
Mar	5.8	4.2
Apr	6.1	4.6
May	5.8	5.2
Jun	5	6.1
Jul	4.8	6.2
Aug	3.9	6.2
Sep	4.4	5.6
Oct	5	5.1
Nov	4.8	4.5
Dec	5.4	3.9
Annual	5.1	4.9

Wind and Solar Resources

[* at 10m height]


6. Calculate "Load Coverage" for each Month

- LC < 100% means back-up required
- LC > 100% means dumped energy
- Recommend Annual Average LC ~ 75% for hybrids with diesel back-up

	INPUTS						
	1.0 kW Wind	1 kW PV	Wind	PV	Total	Avg. Daily	Load
	Daily Energy	Load	Coverage				
Month	Output, kWh		%				
JAN	6.3	3.3	12.6	1.0	13.6	7.70	176%
FEB	6.9	3.7	13.8	1.1	14.9	7.70	194%
MAR	7.8	4.2	15.6	1.3	16.9	7.70	219%
APR	8.6	4.6	17.2	1.4	18.6	7.70	241%
MAY	7.8	5.2	15.6	1.6	17.2	7.70	223%
JUN	5.8	5.8	11.6	1.7	13.3	7.70	173%
JUL	5.3	6.2	10.6	1.9	12.5	7.70	162%
AUG	3.2	6.2	6.4	1.9	8.3	7.70	107%
SEP	4.3	5.6	8.6	1.7	10.3	7.70	133%
OCT	5.8	5.1	11.6	1.5	13.1	7.70	170%
NOV	5.3	4.5	10.6	1.4	12.0	7.70	155%
DEC	6.9	3.9	13.8	1.2	15.0	7.70	194%
Annual Ave.	6.2	4.9	12.3	1.5	13.8	7.70	179%

- 7. Iterate Calculations to Fit Project Design Goal
 - Minimum Renewables Fraction, or
 - Minimum COE, etc

8. Choose Complete System Architecture - Single Line Schematic

- 9. Size Battery Bank
 - Rule of Thumb: AH Capacity ~ 6 Times Rated Wind + PV Current
 - Higher AH for Telecom, Reduced Diesel Usage, Etc.
 - Lower AH for Larger Systems, Trade Winds, Etc.

- **10. Size Inverter**
 - Rule of Thumb: Inverter kW = Total Renewables kW
 - Watch for High Surge Requirements (Induction Motors)
 - Bigger is Generally Better

- 11. Size Back-up Generator
 - Rule of Thumb: Generator kW = 1.25 x Total Renewables kW
 - Watch for Big Intermittent Loads (eg, commercial ice maker)
 - Too Big is Bad

- 12. Complete Balance of Systems Design
 - Tend to Favor Certain BOS Component Suppliers (e.g., Outback or SMA inverters inverters)
 - Design Standardization has Many Benefits

13. Prepare Equipment & Services Budget

Part 4: Budgetary Hybrid System Costs

Cost Assumptions

- Equipment priced at MSRP
- Existing diesel generator used for backup

1 kW Wind / 1 kW Solar Total System Budgetary Cost

Energy Production: 6 – 12 kWh/Day DC 5 – 11 kWh/Day AC

Item	Description	Cost
1	1 kW, 24 VDC Wind Turbine	\$4,600
2	60 ft. Guyed-Tubular Tower	\$2,200
3	1 kW Solar System	\$4,500
4	12 kWh VRLA Battery	\$3,000
5	2.5 kW Inverter	\$2,800
6	DC Source Center	\$600
7	Misc. Wiring & Electrical	\$400
8	Equipment Cabinents	\$4,000
9	Foundations	\$1,500
10	Wire Run (80 ft)	\$600
11	Shipping & Delivery	\$2,500
12	Install Labor & Services	\$2,000
13	Misc. Costs	\$2,500
	Total:	\$31,200

Croatia

6 kW Wind / 2 kW Solar Total System Budgetary Cost

Item Description

1

2

Energy Production: 26 – 60 kWh/Day DC 23 – 54 kWh/Day AC

3	3	2 kW Solar System	\$9,000
2	1	50 kWh VRLA Battery	\$12,500
Ę	5	7.2 kW Inverter Array	\$5,800
6	5	DC Source Center	\$1,200
7	7	Misc. Wiring & Electrical	\$2,900
3	3	Modified 20 ft Container	\$12,000
ç)	Foundations	\$3,500
1	0	Wire Run (80 ft)	\$1,200
1	1	Shipping & Delivery	\$4,000
1	2	Install Labor & Services	\$3,500
1	3	Misc. Costs	\$4,000
		Total:	\$90,800

6 kW 48 VDC Wind Turbine

60 ft. Guyed-Tubular Tower

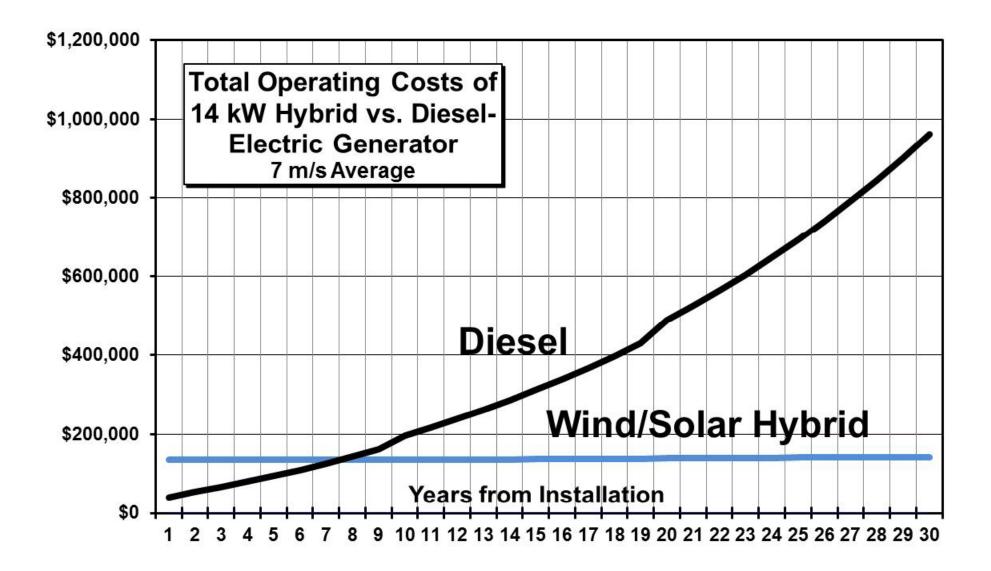
Cost

\$22,000

\$9,200

Nevada, USA

10 kW Wind / 4 kW Solar Total System Budgetary Cost


Energy Production: 55 – 110 kWh/Day DC 50 – 100 kWh/Day AC

ltem	Description	Cost
1	10 kW 48 VDC Wind Turbine	\$27,000
2	80 ft. Guyed-Lattice Tower	\$18,500
3	4 kW Solar Array	\$18,000
4	80 kWh VRLA Battery	\$20,000
5	14 kW Inverter Array	\$11,000
6	DC Source Center	\$1,800
7	Misc. Wiring & Electrical	\$3,500
8	Modified 20 ft Container	\$13,000
9	Foundations	\$5,000
10	Wire Run (80 ft)	\$1,400
11	Shipping & Delivery	\$5,000
12	Install Labor & Services	\$5,000
13	Misc. Costs	\$5,500
	Total:	\$134,700

Southern Chile

Typical Life-Cycle Cost Comparison

Part 5: Examples

Case Study: Navy Beaufort TACTS

- Equipment: 2 x BWC 7.5 kW Wind Turbine, 5 kW Solar, ~ 120 kWh Battery Bank, 20 kW Back-up Diesel, Controls, & Monitoring. Three platforms
- Load: 2-12 kW, ~ 90 kWh/Day
- Performance: 97-100% Annual Fuel Savings
- Cost: ~\$1.5M each in 1986;
 \$95,000 to replace original wind turbines in 1998 (1 in 1993)
- Savings: ~ \$80,000/year, fuel & diesel O&M
- Misc: Batteries and solar have been replaced; turbine O&M ~ \$0

Beaufort TACTS Range 60 miles offshore of Savannah, GA

Case Study: Chandalar Lake, Alaska

- Equipment: 2 x BWC 7.5 kW Wind Turbine, 5 kW Solar, ~ 80 kWh Battery Bank, 12 kW Back-up Diesel
- Load: VOR Station, 3 kW, ~ 70 kWh/Day
- Performance: 90% Annual Fuel Savings
- Cost: ~\$500K each in 1999; All equipment (and pre-cast foundations) airlifted in with C-130's
- Savings: ~ \$70,000/year, fuel & diesel O&M

FAA Chandalar Lake, Alaska VOR Station

■ **Misc**: O&M ~ \$0

Greenland

Antarctica

Bethel, Alaska

Conclusion: Hybrid Systems Make Good Sense

Mike Bergey mbergey@bergey.com

